Applied Time Series Analysis

Ex utamur fierent tacimates duis choro an

Lorem ipsum dolor sit amet, ius minim gubergren ad. At mei sumo sonet audiam, ad mutat elitr platonem vix. Ne nisl idque fierent vix.

  • Exploratory Data Analysis
  • Pre-process the Time series Data
  • Visualization of Data using different plot
  • Moving Average
  • Time Series Vectors and Lags
  • Autocorrelation
  • Classical Time series Data
  • Different Components of time series
  • Seasonal Part
  • Multiplicative & Addicative time series
  • Testing of Stationart:ADF test,KPSS test
  • Make time series stationary:Take Log
  • First Order Differencing
  • Log Based Differencing
  • Rolling Mean
  • Simple Exponential Smoothing(SES)
  • Holt extended simple exponentail smoothing
  • Holt Winters
  • Auto Regression Model
  • PACF & ACF Plot
  • Basic Arima Model
  • SARIMA Model
  • Random Forest For Identify Important Time Period
  • Checking for Stationarity and Differencing the MTS
  • Vector Autoregressive Models
  • Fitting a VAR Model and Identifying the Lag Order
  • The Granger Causality Test
  • Forecasting with VAR Models
  • Course Id                                             A103